

Properties of B^{**} and B_c Mesons

E. Cheu

University of Arizona

(D0 Collaboration)

- Introduction
- B** Analysis
- B_c Analysis
- Summary

Introduction

- B^{**} and B_c provide means for understanding heavy quark spectroscopy.
 - Useful test of quark models.
 - B** is closest QCD analogue of hydrogen system.
- In HQET, b quark decouples from light degrees of freedom.
 - B mesons labeled by j_q of the light quark.
 - $\mathbf{j_q} = \mathbf{L} + \mathbf{s_q}$: Total angular momentum of light quark.
 - $\mathbf{J} = \mathbf{j_q} + \mathbf{s_Q}$: Total angular momentum of system.

B Meson Spectroscopy

- L=0 states are the familiar B and B^* mesons.
- L=1 states collectively called B^{**} .

•
$$j_q = \frac{1}{2}$$
 $J = 0, 1 \to B_0^*, B_1^*$

•
$$j_q = \frac{3}{2}$$
 $J = 1, 2 \rightarrow B_1, B_2^*$

- States within each doublet degenerate in mass.
 - Degeneracy broken because m_b is not infinite.

B^{**} Spectroscopy

- $j_q = \frac{1}{2}$ decays via S-wave.
 - Expected to be broad.
- $j_q = \frac{3}{2}$ decays via D-wave.
 - Expected to be narrow.
 - $B_1 \rightarrow B\pi$
 - $B_2^* \to B\pi, B^*\pi$
- Theory
 - $M(B_1) \sim 5700 5755$
 - $M(B_2^*) \sim 5715 5767$
 - $\Gamma_{1,2} \sim 20 \text{ MeV/c}^2$

Previous B^{**} Results

Experiment	Reconstruction	B_j mass (MeV/c ²)	B_j Width
ALEPH	exclusive	5695 ± 18	53 ± 16
CDF	$(\mu D) + \pi$	5710 ± 10	NA
DELPHI	inclusive $B+\pi$	5732 ± 21	145 ± 28
OPAL	inclusive $B+\pi$	5681 ± 11	116 ± 24

- None of these experiments resolved four states.
 - Either inclusive or statistics limited.
 - Measured widths probably includes many states.
- PDG average mass: $5698 \pm 8 \text{ MeV/c}^2$.

D0 Detector

- Muon coverage out to $|\eta| < 2.0$
- Tracking with silicon vertex detector.
- 2.0T Magnetic field.

Data Set

B** analysis: 350 pb-1

• B_c analysis: 210 pb-1

B^{**} Event Selection

- Two oppositely charged muons $(2.8 < m < 3.35 \text{ GeV/c}^2)$.
- Constrain to J/ψ mass.
- Require additional particles to form B meson.
 - K^{\pm}, K^{*0}, K_s .
- Require large B decay length significance (L/σ_L) .
- Require B momentum along direction from primary to decay vertex.

Reconstructed B Masses

$$B^{\pm} \to J/\psi K^{\pm}$$
 $\mu^{+}\mu^{-}$

 7217 ± 127 events.

$$B_d \rightarrow J/\psi K^{*0}$$
 $K^+\pi^ 2826 \pm 93$ events.

B^{**} Reconstruction

- Select B^+ and B_d^0 candidates.
- Combine with π^{\pm} candidate from primary vertex.
- Plot $M(B\pi) M(B)$.
 - Mass difference improves resolution.
- Expect three peaks.
 - $B_1 \to B^*\pi$ ($B_1 \to B\pi$ forbidden by J, P cons).
 - $B_2^* \to B^*\pi$
 - $B_2^* \to B\pi$
- Ignore γ from B^* decays.
 - Shifts mass difference by 46 MeV/c².
- Cannot distinguish wide $j_q = \frac{1}{2}$ states from bkg.

Mass Difference

First observation of separate states.

 $N(B^{**}) = 536 \pm 114$, $\sim 7\sigma$ significance.

Signal Fit

$$N_{sig} = N\left(f_1 \times G(\Delta_1, \Gamma_1) \qquad B_1 \to B^*\pi \quad (273 \pm 59) + (1 - f_1)\{f_2 \times G(\Delta_2, \Gamma_2) \qquad B_2^* \to B^*\pi \quad (131 \pm 30) + (1 - f_2)G(\Delta_2, \Gamma_2)\}\right)$$

- N: Number of B** candidates.
- f_1 , f_2 : B_1 fraction of total, $BF(B_2^* \to B^*\pi)$.
- G: Breit-Wigner convoluted with a gaussian.
- $\Gamma_{1,2}$, $\Delta_{1,2}$: $B_{1,2}$ width and mass difference.
- Theory: $\Gamma_1 = \Gamma_2$ and $f_2 = 0.5$.
- MC: ΔM resolution = 10.3 MeV/c².

Consistency Checks

Signal is evident for B^{\pm} decays.

Signal is evident for B_d^0 decays.

 $N=32\pm36$ for events where pion is inconsistent with primary vertex.

Systematic Errors

Preliminary

Source	$M(B_1)$	$M(B_2^*) - M(B_1)$	$\Gamma_{1,2}$	f_1
	(MeV/c^2)	(MeV/c^2)	(MeV/c^2)	
Background shape	2	2.2	4.5	0.03
$B_2^* o B^*\pi$ rate (0.0-0.7)	6	3.1	6.2	0.21
Float Γ_2	0	0.5	1.4	0.02
Mass resolution	2	0.6	7.1	0.03
Momentum scale	1	0.1	0.0	0.00
Total	6.7	3.9	9.3	0.21

B^{**} Results

Preliminary

First observation of B_1 and B_2^* separation.

- $M(B_1) = 5724 \pm 4 \pm 7 \text{ MeV/c}^2$.
- $M(B_2^*) M(B_1) = 23.6 \pm 7.7 \pm 3.9 \text{ MeV/c}^2$.
- $\Gamma_1 = \Gamma_2 = 23 \pm 12 \pm 9 \text{ MeV/c}^2$.
- $f_1 = 0.51 \pm 0.11 \pm 0.21$.

First errors are statistical and second errors are systematic.

B_c Mesons

- Last of ground state mesons to be observed.
- Good test of quark models.
- Theory
 - $M(B_c) \sim 6.4 \text{ GeV/c}^2$
 - Lifetime 0.3-0.5 ps
- Only previous result: CDF Run I
 - $20.4^{+6.2}_{-5.5}$ events.
 - $M(B_c) = 6.40 \pm 0.39 \pm 0.13 \text{ GeV/c}^2$.
 - $\tau(B_c) = 0.46^{+0.18}_{-0.16} \pm 0.03 \text{ ps}$

B_c Event Reconstruction

•
$$B_c^{\pm} \to J/\psi \mu^{\pm} \nu$$

$$\mu^{+} \mu^{-}$$

- Require $M(\mu^+\mu^-)$ within 0.25 GeV/c² of J/ψ .
 - Constrain mass to J/ψ .
- Combine with extra high-quality μ in event.
- Backgrounds estimated with J/ψ + non- μ track.

B_c Fit

- B_c signal is extracted from a simultaneous unbinned likelihood fit to $J/\psi\mu$ mass and $J/\psi\mu$ proper time.
- Performed for a variety of mass hypotheses.

B_c Signal

- Background probability density determined from $J/\psi+$ track events.
 - $T < 0 \rightarrow \text{prompt bkg.}$
 - $T > 0, 2 \rightarrow \text{heavy}$ flavor bkg.
- Excess composed of:
 - $B_c \to J/\psi \mu \nu$
 - $B_c \to \psi(2S)\mu\nu$
 - $B_c \to J/\psi \mu \nu \pi^0$

B_c Backgrounds

- Look for feeddown from $B_c^+ \to \psi(2S)\mu^+\nu$.
 - $\psi(2S) \to J/\psi X$.
- Observe fewer than 15 $\psi(2S)$ candidates.
- Use this to fix feeddown fraction at $(15 \pm 15)\%$.
- Use B_u and B_d decays as guide for non-resonant backgrounds $(15 \pm 15\%)$.

Check of Background Estimation

- Expect $B_c^+ \to \psi(2S)\mu^+ X$, $\psi(2S) \to \mu^+ \mu^-$ sample to be dominated by background.
 - $B_c^+ \to \psi(2S)\mu^+ X \sim$ 5-100 times smaller than $B_c^+ \to J/\psi \mu^+ \nu$.
 - Compare J/ψ + track sample to $B_c^+ \to \psi(2S) \mu^+ X$ sample.
 - Test of heavy flavor background.

B_c Consistency Checks

- Simple counting experiment.
 - Normalize background sample to events with T>2.
 - See excess consistent with B_c signal.

Systematic Studies

Source	Mass (GeV/ c^2)	Lifetime (ps)	# Signal
Limited background statistics	0.06	0.013	3.0
Fraction non-resonant $B_c^+ \to J/\psi \mu^+ \pi^0 \nu$	0.14	0.022	6.7
Feed-down fraction from $B_c^+ \to J/\psi(2S)\mu^+\nu$	0.08	0.017	5.4
MC signal modeling: phase space vs. ISGW	0.16	0.023	4.4
MC signal modeling: HQET vs. ISGW	0.06	0.007	1.8
$B_c \; p_T \; spectrum$	0.05	0.004	0.8
Momentum binning	0.14	0.062	0.4
Alignment and primary vertexing algorithm	0.08	0.085	3.1
Vertex algorithm selection criteria	0.06	0.028	_
Prompt/heavy relative bkgd fraction	0.15	0.036	_
Total systematic error	0.34	0.121	10.7

B_c Result

- Events: $95 \pm 12 \pm 11$.
- Mass: $5.95^{+0.14}_{-0.13} \pm 0.34$ GeV/c².
- Lifetime: $0.448^{+0.123}_{-0.096} \pm 0.121$ ps.

First errors are statistical and second errors are systematic.

Summary

- D0 has made new observations of B^{**} and B_c mesons.
- First time separation of B_1 and B_2^* is observed.
- New results on B_c with significantly more statistics.
- Expect new and interesting discoveries in B mesons from the Tevatron.